Hepatic macrophage activation is associated with adipose tissue insulin resistance in non-diabetic patients with Non-Alcoholic Fatty Liver Disease

Chiara Rosso¹, Konstantin Kazankov², Milena Marietti¹, Melania Gaggini³, Emma Buzzigoli³, Holger Jon Møller⁴, Gian Paolo Caviglia¹, Maria Lorena Abate¹, Antonina Smedile¹, Giorgio Maria Saracco⁵, Hendrik Vilstrup², Amalia Gastaldelli³, Jacob George⁶, Henning Grønbæk², Elisabetta Bugianesi¹

BACKGROUND

The onset and progression of liver damage in Non-Alcoholic Fatty Liver Disease (NAFLD) is tightly associated with insulin resistance (IR) in a dysfunctional adipose tissue (AT). Macrophages activation is a key step for both the chronic low inflammatory state of IR and for hepatic damage. To date, a direct pathway linking AT-IR to the liver damage has not yet been described.

AIM

To elucidate the pathways linking IR in the AT, circulating/hepatic macrophages activation markers and liver damage in 40 non-diabetic patients with biopsy-proven NAFLD.

METHODS

Soluble CD163 (sCD163), a marker of macrophages activation, was measured by an in-house sandwich ELISA

AT-IR was calculated in two ways:

AT-IR1 = Ra Glycerol x Fasting Plasma Insulin AT-IR2 = FFAs x Fasting Plasma Insulin

The infusion of [²H₅]glycerol was used to evaluate glycerol Rate of Appearance (Ra) and lipolysis.

The hepatic expression of CD163, ADAM-17 and TNF-a were assessed by qPCR using a CFX96 real-time instrument (Bio-Rad).

Liver histology was scored according to Kleiner classification.

RESULTS

Clinical, biochemical and histological characteristics of NAFLD patients are reported in **Table 1**.

Study cohort RESULTS

/ariables	Study cohort (n = 40)	
Age, years	41.9 11.2	
M/F, n (%)	31/9 (77.5/22.5)	
3MI, kg/m²	26.9 4.4	
Waist circumference, cm	93.5 10.9	
AST, IU/ml	33 (18-77)	
ALT, IU/ml	62 (26-154)	
gGT, IU/ml	54 (18-317)	
Platelets, x 10 ⁹ /l	216 (111-319)	
Total cholesterol, mg/dl	195 (115-256)	
HDL cholesterol, mg/dl	42 (27-81)	
LDL cholesterol, mg/dl	121 (55-198)	
Triglycerides, mg/dl	78 (50-281)	
SC, kg	4.0 1.8	
√F, kg	2.6 1.1	
sCD163 (mg/l)	1.62 (1.07-4.42)	

Histological features		\
Steatosis, %	25 (5-85)	
NAS score, n (%)		
1-2	6 (15)	
3-4	21 (52.5)	
5-6	13 (3	32.5)
Ballooning, n (%)		
0	5 (12.5)	
1	16 (40)	
2	19 (47.5)	
Lobular Inflammation, n (%)		
0	10	(25)
1	30	(75)
Fibrosis Score, n (%)		
F0/F1	18 (45)	
F2	11 (27.5)	
F3/F4	11 (27.5)	

sCD163 plasma levels and AT-IR increased proportionally to the amount of hepatic fat (liver biopsy) (**Figure 1A-B**). Both circulating sCD163 and the degree of AT-IR were significantly higher in NAFLD subjects with F2/F3 fibrosis compared to F0-F1 patients (**Figure 1C & 1D**).

A liver tissue specimens was available for 20 NAFLD study subjects. We found a close correlation between circulating sCD163 and CD163 mRNA expression in the liver (**Figure 2A**). In addition we found a strong association between the hepatic expression of ADAM-17 metalloprotease and the CD163 (**Figure 2B**).

The hepatic expression of TNF-alpha was significantly higher in NAFLD subjects with steatosis ≥33% (**Figure 3A**) and associated with hepatic fat content (r_S=0.6, p=0.005). Both circulating sCD163 and the degree of AT-IR1 (**Figure 3B & 3C**) were related with TNF-alpha espression in the liver.

CONCLUSIONS

Our data support the hypothesis that in NAFLD patients hepatic macrophages activation may be directly stimulated by an increased flux of FFA due to AT-IR.

Despite the small size of the study cohort, these results highlight a direct pathway among IR, dysfunctional adipose tissue and liver damage.

Funded by FP7/2007-2013 under grant agreement n HEALTH-F2-2009-241762, project FLIP; PRIN 2009 ARYX4T; Horizon 2020 under grant agreement no. 634413, project EPoS