Publications

Documents

Order by : Name | Date | Hits | [ Ascendant ]

Peripheral Insulin Resistance Predicts Liver Damage in Diabetic Subjects with NAFLD Peripheral Insulin Resistance Predicts Liver Damage in Diabetic Subjects with NAFLD

hot!
Date added: 12/07/2015
Date modified: 11/07/2016
Filesize: 256 Bytes
Downloads: 1208

BACKGROUND & AIMS:

Surrogate indexes of insulin resistance/sensitivity (IR/IS) are widely used in Non Alcoholic Fatty Liver Disease (NAFLD) although they have never been validated in this population. We aimed to validate the available indexes in NAFLD subjects and to test their ability to predict liver damage also in comparison with NAFLD Fibrosis Score (NFS).

METHODS:

Surrogate indexes were validated by tracer technique (D2-glucose and U-13C-glucose) in the basal state and during an Oral Glucose Tolerance Test (OGTT). The best performing indexes were used in an independent cohort of 145 non-diabetic NAFLD subjects to identify liver damage (fibrosis and NASH).

RESULTS:

In the validation NAFLD cohort, HOMA-IR, IGR and ISI Stumvoll had the best association with hepatic IR, while peripheral IS was most significantly related to OGIS, ISI Stumvoll and eMCRnodem . In the independent cohort, only OGTT derived indexes were associated with liver damage and OGIS was the best predictor of significant (≥F2) fibrosis (OR=0.76, 95% CI= 0.61-0.96, P=0.0233) and of NASH (OR=0.75, 95% CI=0.63-0.90, P=0.0021). Both OGIS and NFS identified advanced (F3/F4) fibrosis, but OGIS predicted it better than NFS (OR=0.57, 95% CI=0.45-0.72, P<0.001) and was also able to discriminate F2 from F3/F4 (P<0.003).

CONCLUSIONS:

OGIS is associated with peripheral IS in NAFLD and is inversely associated with an increased risk of significant/advanced liver damage in non-diabetic subjects with NAFLD.

Non-alcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum Non-alcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum

hot!
Date added: 05/22/2016
Date modified: 05/22/2016
Filesize: 256 Bytes
Downloads: 933

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction in the Western world and is increasing owing to its close association with obesity and insulin resistance. NAFLD represents a spectrum of liver disease that, in a minority of patients, can lead to progressive nonalcoholic steatohepatitis (NASH), fibrosis, and ultimately hepatocellular carcinoma and liver failure. NAFLD is a complex trait resulting from the interaction between environmental exposure and a susceptible polygenic background and comprising multiple independent modifiers of risk, such as the microbiome. The molecular mechanisms that combine to define the transition to NASH and progressive disease are complex, and consequently, no pharmacological therapy currently exists to treat NASH. A better understanding of the pathogenesis of NAFLD is critical if new treatments are to be discovered.

The genetics of Non-Alcoholic Fatty Liver Disease: Spotlight on PNPLA3 & TM6SF2 The genetics of Non-Alcoholic Fatty Liver Disease: Spotlight on PNPLA3 & TM6SF2

hot!
Date added: 05/22/2016
Date modified: 05/22/2016
Filesize: 256 Bytes
Downloads: 913

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum that spans simple steatosis, through non-alcoholic steatohepatitis (NASH) to fibrosis and ultimately cirrhosis. Non-alcoholic fatty liver disease is characterized by substantial inter-patient variation in rate of progression and disease outcome: Although up to 25% of the general population are at risk of progressive disease, only a minority experience associated liver-related morbidity. Non-alcoholic fatty liver disease is considered a complex disease trait that occurs when environmental exposures act upon a susceptible polygenic background composed of multiple independent modifiers. Recent advances include the identification of PNPLA3 as a modifier of disease outcome across the full spectrum of NAFLD from steatosis to advanced fibrosis and hepatocellular carcinoma; and the discovery of TM6SF2 as a potential “master regulator” of metabolic syndrome outcome, determining not only risk of advanced liver disease, but also cardiovascular disease outcomes. In this article, the authors will review the field, discussing in detail the current status of research into these important genetic modifiers of NAFLD progression.

Genetics of alcoholic liver disease Genetics of alcoholic liver disease

hot!
Date added: 05/22/2016
Date modified: 05/22/2016
Filesize: 256 Bytes
Downloads: 851

Excess alcohol consumption with consequent alcoholic liver disease (ALD) is a common cause of liver dysfunction and liver-related mortality worldwide. However, although the majority of heavy drinkers will develop steatosis, only a minority progress to advanced liver disease and cirrhosis. Thus, ALD is a complex disease where subtle inter-patient genetic variations and environmental factors interact to determine disease progression. One genome-wide association study specifically addressing genetic modifiers of ALD has been published. However, most of our understanding is based on studies conducted on nonalcoholic fatty liver disease. Translation of candidates from these studies into ALD has established a role for variants in genes including PNPLA3 and potentially TM6SF2 across the disease spectrum from steatosis, through cirrhosis to hepatocellular carcinoma. Here the authors review the current status of the field with a particular focus on recent advances.

Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD

hot!
Date added: 10/11/2015
Date modified: 11/07/2016
Filesize: 2.47 MB
Downloads: 807

The term non-alcoholic fatty liver disease (NAFLD) covers a pathologic spectrum from lipid accumulation alone (simple steatosis) to steatosis with associated inflammation and fibrosis (non-alcoholic steatohepatitis [NASH]). Non-alcoholic steatohepatitis can progress to cirrhosis and potentially to hepatocellular carcinoma. Although a genetic predisposition has been highlighted, NAFLD is strongly associated with an unhealthy lifestyle and hypercaloric diet in the context of obesity and metabolic disease. The dysregulation of specific pathways (insulin signalling, mitochondrial function, fatty acid, and lipoprotein metabolism) have been linked to steatosis, but elucidating the molecular events determining evolution of the disease still requires further research before it can be translated into specific personalized interventional strategies. In this review, the authors focus on the early events of the pathophysiology of NASH, dissecting the metabolic and nutritional pathways involving fatty acids and glucose sensors that can modulate lipid accumulation in the liver, but also condition the progression to cirrhosis and hepatocellular carcinoma.

Fibrogenesis assessed by serological type III collagen formation identifies patients with progressiv Fibrogenesis assessed by serological type III collagen formation identifies patients with progressiv

hot!
Date added: 11/07/2016
Date modified: 11/07/2016
Filesize: 256 Bytes
Downloads: 771

Elevated Pro-C3 levels are indicative of active fibrogenesis and structural progression of fibrosis and can potentially identify patients most likely to benefit from anti-metabolic and potential anti-fibrotic treatments. Serum Pro-C3 may facilitate patient selection and could help to speed up anti-fibrotic drug development and validation.

Plasma DNA methylation: A potential biomarker for stratification of liver fibrosis in NAFLD Plasma DNA methylation: A potential biomarker for stratification of liver fibrosis in NAFLD

hot!
Date added: 05/22/2016
Date modified: 09/27/2016
Filesize: 2.77 MB
Downloads: 580

Liver biopsy is currently the most reliable way of evaluating liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Its inherent risks limit its widespread use. Differential liver DNA methylation of peroxisome proliferator-activated receptor gamma (PPARγ) gene promoter has recently been shown to stratify patients in terms of fibrosis severity but requires access to liver tissue. The aim of this study was to assess whether DNA methylation of circulating DNA could be detected in human plasma and potentially used to stratify liver fibrosis severity in patients with NAFLD.

Genome-scale study reveals reduced metabolic adaptability in patients with NAFLD Genome-scale study reveals reduced metabolic adaptability in patients with NAFLD

hot!
Date added: 02/20/2016
Date modified: 11/07/2016
Filesize: 536.46 kB
Downloads: 537

Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD.

Lipotoxicity, obesity and metabolic diseases Lipotoxicity, obesity and metabolic diseases

hot!
Date added: 03/07/2017
Date modified: 03/07/2017
Filesize: 256 Bytes
Downloads: 524

Article published in the Newsletter of the Spanish Society of Biochemistry and Molecular Biology (SEBBM)

Emerging anti-fibrotic therapies in the treatment of non-alcoholic steatohepatitis Emerging anti-fibrotic therapies in the treatment of non-alcoholic steatohepatitis

hot!
Date added: 03/05/2017
Date modified: 03/05/2017
Filesize: 256 Bytes
Downloads: 516

Background

Non-alcoholic fatty liver disease (NAFLD) can lead to non-alcoholic steatohepatitis (NASH) and cirrhosis. Fibrosis predicts worse outcomes and mortality. New treatments targeting fibrosis are being investigated to reverse disease progression.

Aim

To review the new pipeline therapeutic agents targeting fibrosis in NASH patients, with particular focus on clinical trials in which reversing fibrosis and portal hypertension are the primary outcomes.

Methods

The literature was searched in PubMed between January 2000 and January 2016 using search terms non-alcoholic fatty liver disease and NASH, with filters of ‘English language’. We focused on fibrosis improvement as the key outcome. We also searched the ClinicalTrials.gov for promising agents that target fibrosis in NASH patients.

Results

Significant advances have been made on approaches targeting fibrosis in NASH patients. Many therapeutic agents are already in development, some of which have shown promising results in preclinical and phase I studies. Novel therapies have entered phase II and III studies targeting fibrosis reversal and/or improvement in portal hypertension. Innovative studies have also started looking into combining these agents, aiming at different mechanisms to maximise therapeutic outcomes. We found five clinical trials in phase II and one in phase III focusing on fibrosis in NASH patients as key outcomes. One of the phase II trials is using combination therapy to target fibrosis.

Conclusions

Ongoing research studies are already investigating new pathways aimed at reversing fibrosis in NASH patients. Novel therapeutic agents are in development and are expected to offer unique options to NASH patients with advanced fibrosis.