Order by : Name | Date | Hits [ Ascendant ]

Plasma DNA methylation: A potential biomarker for stratification of liver fibrosis in NAFLD Plasma DNA methylation: A potential biomarker for stratification of liver fibrosis in NAFLD

Date added: 05/22/2016
Date modified: 09/27/2016
Filesize: 2.77 MB
Downloads: 816

Liver biopsy is currently the most reliable way of evaluating liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Its inherent risks limit its widespread use. Differential liver DNA methylation of peroxisome proliferator-activated receptor gamma (PPARγ) gene promoter has recently been shown to stratify patients in terms of fibrosis severity but requires access to liver tissue. The aim of this study was to assess whether DNA methylation of circulating DNA could be detected in human plasma and potentially used to stratify liver fibrosis severity in patients with NAFLD.

Phosphorylated IGFBP-1 as a non-invasive predictor of liver fat in NAFLD Phosphorylated IGFBP-1 as a non-invasive predictor of liver fat in NAFLD

Date added: 01/10/2017
Date modified: 01/10/2017
Filesize: 505.25 kB
Downloads: 631

Insulin-like growth factor binding protein 1 (IGFBP-1) is a potentially interesting marker for liver fat in NAFLD as it is exclusively produced by the liver, and insulin is its main regulator. We determined whether measurement of fasting serum phosphorylated IGFBP-1 (fS-pIGFBP-1) helps to predict liver fat compared to routinely available clinical parameters and PNPLA3 genotype at rs738409. Liver fat content (proton magnetic resonance spectroscopy) was measured in 378 subjects (62% women, age 43 [30–54] years, BMI 32.7 [28.1–39.7] kg/m2, 46% with NAFLD). Subjects were randomized to discovery and validation groups, which were matched for clinical and biochemical parameters and PNPLA3 genotype. Multiple linear regression and Random Forest modeling were used to identify predictors of liver fat. The final model, % Liver Fat Equation’, included age, fS-pIGFBP-1, S-ALT, waist-to-hip ratio, fP-Glucose and fS-Insulin (adjusted R2 = 0.44 in the discovery group, 0.49 in the validation group, 0.47 in all subjects). The model was significantly better than a model without fS-pIGFBP-1 or S-ALT or S-AST alone. Random Forest modeling identified fS-p-IGFBP-1 as one of the top five predictors of liver fat (adjusted R2 = 0.39). Therefore, measurement of fS-pIGFBP-1 may help in non-invasive prediction of liver fat content.

Peripheral Insulin Resistance Predicts Liver Damage in Diabetic Subjects with NAFLD Peripheral Insulin Resistance Predicts Liver Damage in Diabetic Subjects with NAFLD

Date added: 12/07/2015
Date modified: 11/07/2016
Filesize: 256 Bytes
Downloads: 1596


Surrogate indexes of insulin resistance/sensitivity (IR/IS) are widely used in Non Alcoholic Fatty Liver Disease (NAFLD) although they have never been validated in this population. We aimed to validate the available indexes in NAFLD subjects and to test their ability to predict liver damage also in comparison with NAFLD Fibrosis Score (NFS).


Surrogate indexes were validated by tracer technique (D2-glucose and U-13C-glucose) in the basal state and during an Oral Glucose Tolerance Test (OGTT). The best performing indexes were used in an independent cohort of 145 non-diabetic NAFLD subjects to identify liver damage (fibrosis and NASH).


In the validation NAFLD cohort, HOMA-IR, IGR and ISI Stumvoll had the best association with hepatic IR, while peripheral IS was most significantly related to OGIS, ISI Stumvoll and eMCRnodem . In the independent cohort, only OGTT derived indexes were associated with liver damage and OGIS was the best predictor of significant (≥F2) fibrosis (OR=0.76, 95% CI= 0.61-0.96, P=0.0233) and of NASH (OR=0.75, 95% CI=0.63-0.90, P=0.0021). Both OGIS and NFS identified advanced (F3/F4) fibrosis, but OGIS predicted it better than NFS (OR=0.57, 95% CI=0.45-0.72, P<0.001) and was also able to discriminate F2 from F3/F4 (P<0.003).


OGIS is associated with peripheral IS in NAFLD and is inversely associated with an increased risk of significant/advanced liver damage in non-diabetic subjects with NAFLD.

Obesity/insulin resistance rather than liver fat increases coagulation factor activities and express Obesity/insulin resistance rather than liver fat increases coagulation factor activities and express

Date added: 03/08/2017
Date modified: 03/08/2017
Filesize: 256 Bytes
Downloads: 1030

Increased liver fat may be caused by insulin resistance and adipose tissue inflammation or by the common I148M variant in PNPLA3 at rs738409, which lacks both of these features. We hypothesised that obesity/insulin resistance rather than liver fat increases circulating coagulation factor activities. We measured plasma prothrombin time (PT, Owren method), activated partial thromboplastin time (APTT), activities of several coagulation factors, VWF:RCo and fibrinogen, and D-dimer concentration in 92 subjects divided into groups based on insulin sensitivity and PNPLA3 genotype.

We conclude that obesity/insulin resistance rather than an increase in liver fat is associated with a procoagulant plasma profile. This reflects adipose tissue inflammation and increased hepatic production of coagulation factors and their susceptibility for activation.

Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance

Date added: 01/09/2017
Date modified: 01/10/2017
Filesize: 1.02 MB
Downloads: 563

Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disorders ranging from simple steatosis (non-alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFL increases the risk of liver fibrosis. If the liver is fatty due to causes of insulin resistance such as obesity and physical inactivity, it overproduces glucose and triglycerides leading to hyperinsulinemia and a low high-density lipoprotein (HDL) cholesterol concentration. The latter features predispose to type 2 diabetes and cardiovascular disease (CVD). Understanding the impact of nutritional modulation of liver fat content and insulin resistance is therefore of interest for prevention and treatment of NAFLD. Hypocaloric, especially low carbohydrate ketogenic diets rapidly decrease liver fat content and associated metabolic abnormalities. However, any type of caloric restriction seems effective long-term. Isocaloric diets containing 16%–23% fat and 57%–65% carbohydrate lower liver fat compared to diets with 43%–55% fat and 27%–38% carbohydrate. Diets rich in saturated (SFA) as compared to monounsaturated (MUFA) or polyunsaturated (PUFA) fatty acids appear particularly harmful as they increase both liver fat and insulin resistance. Overfeeding either saturated fat or carbohydrate increases liver fat content. Vitamin E supplementation decreases liver fat content as well as fibrosis but has no effect on features of insulin resistance.

Non-alcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum Non-alcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum

Date added: 05/22/2016
Date modified: 05/22/2016
Filesize: 256 Bytes
Downloads: 1322

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction in the Western world and is increasing owing to its close association with obesity and insulin resistance. NAFLD represents a spectrum of liver disease that, in a minority of patients, can lead to progressive nonalcoholic steatohepatitis (NASH), fibrosis, and ultimately hepatocellular carcinoma and liver failure. NAFLD is a complex trait resulting from the interaction between environmental exposure and a susceptible polygenic background and comprising multiple independent modifiers of risk, such as the microbiome. The molecular mechanisms that combine to define the transition to NASH and progressive disease are complex, and consequently, no pharmacological therapy currently exists to treat NASH. A better understanding of the pathogenesis of NAFLD is critical if new treatments are to be discovered.

Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other... Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other...

Date added: 05/27/2018
Date modified: 05/27/2018
Filesize: 256 Bytes
Downloads: 131

"Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases"

Key physiological functions of the liver, including glucose and lipid metabolism, become disturbed in the setting of non-alcoholic fatty liver disease (NAFLD) and may be associated with a systemic inflammatory ‘milieu’ initiated in part by liver-secreted cytokines and molecules. Consequently, the pathophysiological effects of NAFLD extend beyond the liver with a large body of clinical evidence demonstrating NAFLD to be independently associated with both prevalent and incident cardiovascular disease (CVD), chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). The magnitude of risk of developing these extrahepatic diseases parallels the underlying severity of NAFLD, such that patients with non-alcoholic steatohepatitis (NASH) appear to be at greater risk of incident CVD, CKD and T2DM than those with simple steatosis. Other modifiers of risk may include genetic variants (e.g. patatin-like phospholipase domain-containing 3 and trans-membrane 6 superfamily member 2 polymorphisms), visceral adipose tissue accumulation, dietary intake and the gut microbiome. Emerging data also suggest that NAFLD may be a risk factor for colonic neoplasia and reduced bone mineral density, especially among men. Importantly, improvement/resolution of NAFLD is associated with a reduced incidence of T2DM and improved kidney function, adding weight to causality and suggesting liver focused treatments may reduce risk of extrahepatic complications. Awareness of these associations is important for the clinicians such that CVD risk factor management, screening for T2DM and CKD are part of the routine management of patients with NAFLD.

MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals

Date added: 06/02/2018
Date modified: 06/02/2018
Filesize: 1.44 MB
Downloads: 88

Nonalcoholic fatty liver disease (NAFLD) represents an emerging cause of hepatocellular carcinoma (HCC), especially in non-cirrhotic individuals. The rs641738 C > T MBOAT7/TMC4 variant predisposes to progressive NAFLD, but the impact on hepatic carcinogenesis is unknown. In Italian NAFLD patients, the rs641738 T allele was associated with NAFLD-HCC (OR 1.65, 1.08–2.55; n = 765), particularly in those without advanced fibrosis (p < 0.001). The risk T allele was linked to 3’-UTR variation in MBOAT7 and to reduced MBOAT7 expression in patients without severe fibrosis. The number of PNPLA3, TM6SF2, and MBOAT7 risk variants was associated with NAFLD-HCC independently of clinical factors (p < 0.001), but did not significantly improve their predictive accuracy. When combining data from an independent UK NAFLD cohort, in the overall cohort of non-cirrhotic patients (n = 913, 41 with HCC) the T allele remained associated with HCC (OR 2.10, 1.33–3.31). Finally, in a combined cohort of non-cirrhotic patients with chronic hepatitis C or alcoholic liver disease (n = 1121), the T allele was independently associated with HCC risk (OR 1.93, 1.07–3.58). In conclusion, the MBOAT7 rs641738 T allele is associated with reduced MBOAT7 expression and may predispose to HCC in patients without cirrhosis, suggesting it should be evaluated in future prospective studies aimed at stratifying NAFLD-HCC risk.

Lipotoxicity, obesity and metabolic diseases Lipotoxicity, obesity and metabolic diseases

Date added: 03/07/2017
Date modified: 03/07/2017
Filesize: 256 Bytes
Downloads: 1031

Article published in the Newsletter of the Spanish Society of Biochemistry and Molecular Biology (SEBBM)

Lipid Zonation and Phospholipid Remodeling in Nonalcoholic Fatty Liver Disease Lipid Zonation and Phospholipid Remodeling in Nonalcoholic Fatty Liver Disease

Date added: 08/22/2017
Date modified: 08/22/2017
Filesize: 1.49 MB
Downloads: 621

Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. Conclusion: NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD.